moléculenom féminin(latin moles, masse, avec l'influence de cor
IntroductionLa matière, au sens courant du terme, sous ses différents états est discontinue et formée par l'assemblage d'atomes. Dans les conditions usuelles, toutefois, la matière n'est pas, à l'exception des gaz nobles, formée d'atomes isolés et indépendants. Le plus souvent, les atomes s'assemblent pour former des architectures plus volumineuses, ou molécules, dans des composés dits moléculaires.Historique du concept de moléculeL'hypothèse d'AvogadroLa notion de molécule, comme entité distincte de celle de l'atome, fut suggérée la première fois en 1811 par l'Italien Amedeo Avogadro qui proposa l'hypothèse selon laquelle le nombre de molécules d'un gaz quelconque dans un volume donné est toujours le même, les gaz étant, bien entendu, dans les mêmes conditions de température et de pression.Par ailleurs, le Français Louis Joseph Gay-Lussac avait montré expérimentalement en 1809 que les volumes mis en jeu dans les réactions chimiques entre les gaz sont dans des rapports simples. Par exemple, un volume de chlore réagit sur un volume égal d'hydrogène pour donner deux volumes de chlorure d'hydrogène (les trois gaz étant dans les mêmes conditions de température et de pression).Si nous rapprochons cette constatation expérimentale de l'hypothèse d'Avogadro, nous avons : 1 volume de chlore + 1 volume d'hydrogène = 2 volumes de HCln molécules + n molécules = 2n molécules Si de plus nous supposons, en accord avec l'analyse chimique, que le chlorure d'hydrogène correspond à la formule HCl, les 2n molécules de HCl contiennent 2n atomes H et 2n atomes Cl, donc chaque molécule de chlore et d'hydrogène contient deux atomes et la réaction entre le (di)chlore et le (di)hydrogène doit s'écrire : H2 + Cl2 → 2 HCl (et non H + Cl → HCl).Bien que reprise, peu de temps après (1814), par le Français André Marie Ampère, l'hypothèse d'Avogadro et la distinction atome-molécule qui en découle sont restées dans l'ombre, jusqu'aux travaux de l'Italien Stanislao Cannizzaro et des Français Auguste Laurent et Charles Gerhardt. La distinction entre atome et molécule conduisait en effet logiquement à considérer ces notions comme reflétant une réalité sous-jacente à celle qu'on peut observer. Cette conception, maintenant universellement adoptée, fut combattue avec vigueur par de nombreux scientifiques qui voyaient là, à tort, une hypothèse non fondée expérimentalement, donc à caractère quasi métaphysique.Le nombre d'AvogadroC'est en hommage à Amedeo Avogadro que le nombre de molécules contenues dans 22,4 l d'un gaz (à 0 °C et sous 1 atm ; 1 atmosphère normale = 101 325 pascals ou 1,013 25 bar), nombre déterminé approximativement pour la première fois par l'Autrichien Joseph Loschmidt en 1865, s'appelle nombre d'Avogadro. Sa valeur numérique actuellement reconnue est NA = 6,022 × 1023.Mole et moléculesLa notion de mole est rendue indispensable par la petitesse extrême des molécules. Elle est liée à la connaissance de leur formule chimique, qui renseigne sur la nature et le nombre de chacun des atomes constituant la molécule. La formule permet ainsi de calculer la masse de celle-ci à partir de celle de ses atomes. Grâce au choix judicieux de la mole, définie comme le nombre d'atomes de carbone contenus dans 12 g de carbone 12, la masse (en grammes) d'une mole d'un élément donné est égale au nombre de « nucléons » (protons et neutrons) contenus dans le noyau de l'atome. Le noyau du carbone 12, par exemple, contient 12 nucléons ; la masse de 6 × 1023 (en fait, 6,022 04 × 1023 [nombre d'Avogadro]) atomes de carbone est de 12 g. Les données du tableau périodique des éléments permettent ainsi de connaître la masse d'une mole de molécules. Ainsi, une mole de méthanol de formule CH3OH a une masse de 32 g (12 + 4 + 16), une mole d'eau de formule H2O, une masse de 18 g, etc.Dans le cas des gaz, le calcul est simplifié grâce à la loi d'Avogadro : « Des volumes égaux de différents gaz contiennent le même nombre de molécules. » Quand ces gaz sont dans les mêmes conditions de température et de pression (généralement 0 °C et 1 013 hPa), 32 g d'oxygène (O2), 2 g d'hydrogène (H2) ou 44 g de dioxyde de carbone (CO2) occupent un volume, identique, de 22,4 l. La mole est donc le facteur qui établit un lien entre les caractéristiques microscopiques des molécules et des quantités (masses ou volumes) macroscopiques plus perceptibles.Stabilité des moléculesLes molécules résultent de la formation, entre les atomes qui les constituent, de liaisons covalentes. L'énergie des atomes quand ils sont liés dans une molécule est beaucoup plus faible que celle des atomes séparés ; la molécule est par conséquent le système le plus stable.La liaison covalenteLa nature de cette liaison est restée longtemps mystérieuse. L'Américain Gilbert Newton Lewis, le premier, proposa en 1916, sans justifications, un modèle qualificatif intéressant : les deux atomes H mettent en commun leur unique électron pour former une paire d'électrons, qui est responsable de la cohésion de la molécule et dite, de ce fait, paire liante.Ce type de liaison, que Lewis a appelé liaison covalente, permet à chacun des deux atomes H partageant les deux électrons d'acquérir la structure particulièrement stable de l'hélium. Dans le schéma dit de Lewis, le doublet liant est représenté par un trait horizontal ( ― ).Les liaisons intermoléculairesLes molécules sont également soumises entre elles à des forces de liaison intermoléculaires, mais celles-ci sont beaucoup plus faibles que les liaisons covalentes (de l'ordre de quelques kilojoules par mole, contre plusieurs centaines de kilojoules par mole dans le cas de liaisons covalentes), ce qui entraîne des distances intermoléculaires plus grandes que les distances interatomiques dans la molécule. Les distances d'approche, à l'équilibre, entre des particules (atomes ou molécules) sont en effet d'autant plus petites que les énergies d'attraction sont plus grandes.Ces interactions existent, bien entendu, entre les molécules d'un gaz (non parfait) et justifient la possibilité de liquéfaction puis de solidification d'un gaz quand la température s'abaisse. Le refroidissement entraîne, en effet, la diminution de l'agitation thermique des molécules, d'où la possibilité de formation d'états condensés, liquide et solide. L'absence par définition de forces intermoléculaires pour un gaz parfait rendrait impossible ce processus.Inversement, la rupture thermique de ces liaisons intermoléculaires dans le cas d'un mélange de plusieurs molécules permet la séparation des divers constituants. Ainsi, l'azote, l'oxygène et l'argon sont obtenus industriellement par distillation de l'air liquide. Les énergies mises en jeu, bien que suffisantes pour séparer les constituants, ne permettent cependant pas de casser les molécules. Cela peut se produire à des températures plus élevées, par exemple lors du craquage des molécules d'hydrocarbures des pétroles et lors de la dissociation des molécules H2 ; à 5 000 K, sous 1 atm, 95 % des molécules H2 sont dissociées en atomes H. Les atomes, après avoir été séparés, peuvent perdre progressivement leurs électrons (ionisation), donnant naissance, à très hautes températures (plusieurs milliers de degrés), aux plasmas, où les atomes peuvent être totalement ionisés par la perte de tous leurs électrons.La forme des moléculesLes liaisons covalentes, responsables de la cohésion des molécules, sont des liaisons souvent fortes, saturées et dirigées. La notion de force se rapporte à l'énergie de liaison.Par saturation, on entend que, par exemple, H peut s'unir à N pour donner NH3 mais pas NH4 ; la justification électronique de la liaison covalente proposée par Lewis rend compte de cette propriété.Le mot directivité signifie que les liaisons covalentes, unissant un atome à d'autres dans une molécule, forment entre elles des angles définis, imposant ainsi une certaine forme à la molécule.La méthode VSEPRPar exemple, les molécules H2O (eau), NH3 (ammoniac) et CH4 (méthane) s'inscrivent sensiblement dans un tétraèdre avec au centre les atomes O, N, C, les atomes H étant situés sur deux, trois et quatre sommets. Les angles de liaison sont donc voisins de 109,5° (104,5° pour H2O, 107° pour NH3 et 109,5° pour CH4).Dans ces trois molécules, il y a autour de l'atome central quatre doublets électroniques (deux non-liants et deux liants pour H2O ; un non-liant et trois liants pour NH3 ; quatre liants pour CH4). La disposition adoptée par ces doublets correspond à un écart angulaire aussi grand que possible entre eux selon la règle de Gillespie-Nyholm. Cette règle est souvent désignée par son sigle anglo-saxon VSEPR (Valence Shell Electron Pair Repulsion).La stéréochimie ou la géométrie des moléculesEn fait, bien avant la mise en évidence expérimentale de la structure des molécules, quelques chimistes avaient proposé – pour un but essentiellement mnémonique, c'est-à-dire pour représenter le mieux possible les propriétés physico-chimiques des molécules – des schémas tels que le tétraèdre pour CH4 (Achille Le Bel et Jacobus Henricus Van't Hoff) ou la forme cyclique du benzène C6H6 (August Kekulé).Actuellement, des méthodes variées (techniques spectroscopiques, diffraction des rayons X ou des électrons, microscopie électronique) permettent de trouver la structure spatiale des molécules et, quelquefois, d'obtenir des courbes de niveau de densité électronique.Les molécules peuvent former des chaînes, des cycles, des cages… Ces structures sont représentées par des schémas de Lewis ou, plus correctement, par des modèles moléculaires éclatés (centres des atomes) ou compacts.Les phénomènes d'isomérieNotons que les structures des molécules peuvent justifier les phénomènes d'isomérie (la même formule brute correspondant à des composés différents). Par exemple, C4H8O2 peut être l'acide butanoïque ou un diol (isomérie de constitution). Les molécules ne sont généralement pas rigides. Avec la vibration des atomes autour de leur position d'équilibre ou la rotation de groupes d'atomes autour d'un axe de liaison (phénomènes qui se produisent toujours, sauf à 0 K), certaines molécules peuvent changer rapidement de structure. Ainsi, la molécule d'ammoniac s'inverse très rapidement, comme un parapluie par fort vent, avec une fréquence de 23,79 GHz. C'est un exemple de molécule « flexible ».
Aucun site ajouté récemment